Гликолиз - Definition. Was ist Гликолиз
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Гликолиз - definition

АНАЭРОБНЫЙ ПРОЦЕСС ОКИСЛЕНИЯ ГЛЮКОЗЫ
Фосфотриозный путь; Шунт Эмбдена-Мейерхофа
  • Артур Гарден
  • Образование фруктозо-2,6-бисфосфата (снизу) из фруктозо-6-фосфата (сверху)
  • 1 — фруктоза, 2 — фруктозо-1-фосфат, 3 — дигидроксиацетонфосфат, 4 — глицеральдегид, 5 — глицеральдегид-3-фосфат, FK — фруктокиназа, ALD-B — фруктозо-1-фосфатальдолаза, TPI — триозофосфатизомераза, TK — триозокиназа.
  • 1 — галактоза, 2 — галактозо-1-фосфат, 3 — UDP-глюкоза, 4 — UDP-галактоза, 5 — глюкозо-1-фосфат, 6 — глюкозо-6-фосфат. GK — галактокиназа, GALT — галактозо-1-фосфатуридилтрансфераза, UGE — UDP-глюкозо-4-эпимераза, PGM — фосфоглюкомутаза.
  • Пространственная структура гексокиназы I типа
  • Маннозо-6-фосфат
  • [[Позитронно-эмиссионная томография]] всего тела
  • Пространственная структура пируваткиназы
  • 342px
  • 318px
  • 279px
  • 274px
  • 416px
  • 355px
  • 314px
  • 344px
  • 344px
  • 418px
  • Схема гликолиза
  • Ксилулозо-5-фосфат
  • Ион магния «закрывает собой» часть отрицательного заряда фосфатных групп АТФ

Гликолиз         
(от греч. glykys - сладкий и lysis - распад, разложение)

процесс анаэробного ферментативного негидролитического расщепления углеводов (См. Углеводы) (главным образом глюкозы) в животных тканях, сопровождающийся синтезом аденозинтрифосфорной кислоты (АТФ) (см. Аденозинфосфорные кислоты) заканчивающийся образованием молочной кислоты (См. Молочная кислота). Г. имеет большое значение для мышечных клеток, сперматозоидов, растущих (в т. ч. опухолевых) тканей, т.к. обеспечивает накопление энергии в отсутствии кислорода. Продукты, образующиеся при Г., являются субстратами последующих окислительных превращений (см. Трикарбоновых кислот цикл). Процессами, аналогичными Г., являются молочнокислое, маслянокислое, спиртовое и пр. виды брожения (См. Брожение), протекающего в растительных, дрожжевых и бактериальных клетках. Интенсивность отдельных стадий Г. зависит от кислотности - водородного показателя (См. Водородный показатель) - рН (оптимум рН 7-8), температуры и ионного состава среды. Последовательность реакций Г. (см. схему) хорошо изучена, идентифицированы промежуточные продукты, выделены ферменты Г. в кристаллическом или очищенном виде.

Г. начинается с образования фосфорных производных сахаров, что способствует превращению циклической формы субстрата в ациклическую, более реакционноспособную. Одной из реакций, регулирующих скорость Г., является реакция 2, катализируемая ферментом фосфорилазой. Существенную регуляторная роль принадлежит также ферменту фосфофруктокиназе (реакция 5), активность которой тормозится АТФ, но стимулируется продуктами её распада. Центральным звеном Г. является гликолитическая оксидоредукция (реакции 8-10), представляющая окислительно-восстановительный процесс, протекающий с окислением 3-фосфоглицеринового альдегида до 3-фосфоглицериновой кислоты и восстановлением кофермента Никотинамидадениндинуклеотида (НАД). Эти превращения осуществляет дегидрогеназа 3-фосфоглицеринового альдегида (ДФГА) при участии фосфоглицераткиназы.

В результате оксидоредукции высвобождается энергия, аккумулирующаяся (в виде богатого энергией соединения - АТФ) в процессе субстратного фосфорилирования. Второй реакцией, обеспечивающей образование АТФ, является реакция 13. Г. кончается образованием молочной кислоты (реакция 14) под действием лактатдегидрогеназы и с участием восстановленного НАД. Т. о., при расщеплении 1 молекулы глюкозы образуются 2 молекулы молочной кислоты и 4 молекулы АТФ. В то же время на первых стадиях Г. (см. реакции 1, 5) затрачиваются 2 молекулы АТФ на 1 молекулу глюкозы. В процессе Г. выделяется только около 7\% энергии, которая может быть получена при полном окислении глюкозы (до СО2 и Н2О).

Кроме глюкозы, в процесс Г. могут вовлекаться глицерин, некоторые аминокислоты и др. субстраты. В мышечной ткани, где основной субстрат Г. - Гликоген, процесс начинается с реакций 2 и 3 и носит название гликогенолиза. Общим промежуточным продуктом для гликогенолиза и Г. является глюкозо-6-фосфат.

Все реакции Г. обратимы, кроме 1, 5 и 13. Однако можно получить глюкозу (реакция 1) или фруктозомонофосфат (реакция 5) из их фосфорных производных при гидролитическом отщеплении фосфорной кислоты в присутствии соответствующих ферментов; реакция 13 практически необратима, по-видимому, вследствие высокой энергии гидролиза фосфорной группировки (около 13 ккал/моль). Поэтому образование глюкозы из продуктов Г. идёт другим путём.

В присутствии O2 скорость Г. снижается (эффект Пастера). В некоторых тканях (например, опухолевые клетки, сетчатка, безъядерные эритроциты) возможен и интенсивный, т. н. аэробный, Г. в присутствии кислорода. Кроме того, имеются примеры подавления гликолизом тканевого дыхания (эффект Кребтри) в некоторых интенсивно гликолизирующих тканях. Механизмы взаимоотношений анаэробных и аэробных окислительных процессов до конца не изучены.

А. А. Болдырев.

Рис. к ст. Гликолиз.

ГЛИКОЛИЗ         
(от греч. glykys - сладкий и ...лиз), процесс расщепления углеводов (преимущественно глюкозы) в отсутствие кислорода под действием ферментов. Конечный продукт гликолиза в животных тканях - молочная кислота. Для растений характерна видоизмененная форма гликолиза, конечный продукт которого - пировиноградная кислота. Освобождающаяся при гликолизе энергия используется для жизнедеятельности животных организмов. Гликолиз тесно связан с дыханием и брожением. Увеличение активности ферментов гликолизом отмечено в раковых клетках.
ГЛИКОЛИЗ         
а, м., физиол.
Ферментативное анаэробное (без участия кислорода) расщепление углеводов в животном организме с образованием молочной кислоты.

Wikipedia

Гликолиз

Глико́лиз, или путь Эмбдена — Мейергофа — Парнаса (от греч. γλυκός — сладкий и греч. λύσης — расщепление) — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. Гликолиз состоит из цепи последовательных ферментативных реакций и сопровождается запасанием энергии в форме АТФ и НАДH. Гликолиз является универсальным путём катаболизма глюкозы и одним из трёх (наряду с пентозофосфатным путём и путём Энтнера — Дудорова) путей окисления глюкозы, встречающихся в живых клетках. Реакция гликолиза в суммарном виде выглядит следующим образом:

Глюкоза + 2НАД+ + 2АДФ + 2Pi → 2 пируват + 2НАД*H + 2Н+ + 2АТФ + 2Н2O.

Кислород не требуется для протекания гликолиза. В аэробных условиях пировиноградная кислота далее декарбоксилируется, соединяется с коферментом А и вовлекается в цикл Кребса. В анаэробных условиях (при гипоксии) пируват восстанавливается до молочной кислоты либо претерпевает дальнейшие превращения в ходе брожения.

Beispiele aus Textkorpus für Гликолиз
1. Исследователи решили посмотреть, что будет с опухолью, если попытаться прервать гликолиз.